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ABSTRACT 

 

 

The class imbalance problem in classification has been recognized as a significant research 

problem in recent years and a number of methods have been introduced to improve classification 

results. Rebalancing class distributions (such as over-sampling or under-sampling of learning 

datasets) has been popular due to its ease of implementation and relatively good performance. 

For the Support Vector Machine (SVM) classification algorithm, research efforts have focused 

on reducing the size of learning sets because of the algorithm‟s sensitivity to the size of the 

dataset. In this dissertation, we propose a metaheuristic approach (Genetic Algorithm) for under-

sampling of an imbalanced dataset in the context of a SVM classifier. The goal of this approach 

is to find an optimal learning set from imbalanced datasets without empirical studies that are 

normally required to find an optimal class distribution. Experimental results using real datasets 

indicate that this metaheuristic under-sampling performed well in rebalancing class distributions. 

Furthermore, an iterative sampling methodology was used to produce smaller learning sets by 

removing redundant instances. It incorporates informative and the representative under-sampling 

mechanisms to speed up the learning procedure for imbalanced data learning with a SVM. When 

compared with existing rebalancing methods and the metaheuristic approach to under-sampling, 

this iterative methodology not only provides good performance but also enables a SVM classifier 

to learn using very small learning sets for imbalanced data learning. For large-scale imbalanced 

datasets, this methodology provides an efficient and effective solution for imbalanced data 

learning with an SVM.  
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CHAPTER 1      INTRODUCTION 

 

 

The imbalanced learning problem in data mining has attracted a significant amount of 

interest from the research community and practitioners because real-world datasets are 

frequently imbalanced, having a minority class with relatively few instances when compared to 

the other classes in the dataset. Standard classification algorithms used in supervised learning 

have difficulties in correctly classifying the minority class. Most of these algorithms assume a 

balanced distribution of classes and equal misclassification costs for each class.  In addition, 

these algorithms are designed to generalize from sample data and output the simplest hypothesis 

that best fits the data. This principle is embedded in the inductive bias of many machine learning 

algorithms including Decision Tree, nearest neighbor, and Support Vector Machine (SVM). 

Therefore, when they are used on complex imbalanced data sets, these algorithms are inclined to 

be overwhelmed by the majority class and ignore the minority class causing errors in 

classification for the minority class. In other words, standard classification algorithms try to 

minimize the overall classification error rate by producing a biased hypothesis which regards 

almost all instances as the majority class.  

Recent research on the class imbalance problem has included studies on datasets from a 

wide variety of contexts such as, information retrieval and filtering (Lewis & Catlett, 1994), 

diagnosis of rare thyroid disease (Murphy & Aha, 1994), text classification (Chawla et al., 2002), 

credit card fraud detection (Wu & Chang, 2003) and detection of oil spills from satellite images 

(Kubat et al., 1998). The degree of imbalance varies depending on the context. In intrusion 

detection, typically less than 10% of the data are actual intrusions. In detection of cancerous 

cells, less than 1% of cells are actually cancerous. 
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To illustrate the imbalance problem, consider the “Mammography Data Set”, which has 

been used frequently to study the class imbalance learning problem. This data is a collection of 

images obtained from a series of mammography exams conducted on a set of distinct patients. 

Analyzing the images in the two classes, “cancerous” and “noncancerous” patient, it is observed 

that the number of noncancerous patients greatly exceeds the number of cancerous patients. 

Indeed, this data set contains 10,923 “Negative” (major class) samples and 260 “positive” 

(minority class) samples. Ideally, a classifier should classify both classes with almost 100% 

accuracy. However, classifiers tend to produce severely biased classification with the majority 

class almost 100% accuracy and conversely the minority class having accuracies of less than 

0.5% accuracy. As a result, most cancerous patients are classified as noncancerous (i.e., a Type I 

error). In the classification of diagnosing patients, such a consequence would be extremely costly 

because treatment would not be initiated. For these imbalanced scenarios, classifiers should 

provide much higher accuracy for the minority class without a significant loss in accuracy for the 

majority class.  

New classification methods are needed to address the class imbalance problem in 

supervised learning. In this research, we propose a new methodology for imbalanced data 

learning based on the SVM classification algorithm. The remainder of the dissertation is 

organized as follows. In Chapter 2, we review general approaches for imbalanced data learning 

and related studies and describe the scope of this research. Chapter 3 briefly describes the SVM 

classification algorithm and the causes of imbalanced learning with the SVM classifier. This is 

followed by a discussion of existing methods that have been used for the class imbalance 

problem based on the SVM algorithm. At the end of this chapter, the approach used in the new 

methodology is described.  In Chapter 4, we address a critical issue in SVM learning, namely, 
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„large-scale data’, and an optimization based under-sampling method using Genetic Algorithm 

is introduced and classification results are compared with other sampling methods using real 

datasets. In Chapter 5, the new methodology that solves the class imbalance problem on SVM 

with relatively small learning sets for SVM classifier is described. Finally we conclude with 

suggestions on future research directions in Chapter 6.   
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CHAPTER 2      LITERATURE REVIEW 

 

 

In general, a class imbalance problem is seen in two situations namely, natural imbalance 

or rarity of cases (i.e., instances or samples).  Underlying reasons for imbalance could be the lack 

of occurrences in nature for a specific phenomena or possibly insufficient funds or time to collect 

sufficient data. In recent years, many researchers have studied the class imbalance problem. 

Weiss (2004) presented an overview of the field of learning from imbalanced datasets. His work 

particularly focused on the problems with identifying rare objects in data mining by defining two 

types of rarity: rare classes and rare cases. A rare class contains relatively smaller instances than 

other classes, while a rare case indicates a small subset of the data (instance) space. 

Unsupervised learning algorithms such as clustering may help to identify a rare case. More 

generally, class imbalance is related to rare classes and is associated with classification 

problems. In his work, Weiss argued that typical evaluation metrics do not adequately describe 

the value of rarity so that data mining is not likely to handle rare classes and rare cases. Monard 

et al. (2002) discussed several issues related to learning with skewed class distributions, such as 

the relationship between cost-sensitive learning and class distributions, and the limitations of 

accuracy and error rate in measuring the performance of classifiers.  

 

2.1 Handling the Class Imbalance Problem 

 

The various approaches used to deal with the class imbalance problem can be grouped 

into three categories: (1) changing class distributions (modifying the data itself to rebalance 

skewed datasets at the data level), (2) adjustment of classifiers (adjust standard classification 
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algorithms to imbalanced data sets by applying cost or weight for misclassified cases), and (3) 

ensemble learning methods (using a combination of multiple classifiers with multiple datasets). 

2.1.1 Changing class distributions 

Changing class distributions is performed at the data level in order to modify class 

distribution in the training datasets. Since many more instances belong to the majority class than 

the minority class, class distribution can be balanced by under-sampling the majority class, over-

sampling the minority class, combining under-sampling and over-sampling, or some other 

sampling method. Studies have shown that a balanced data set provides improved classification 

performance as compared with an imbalanced data set. There have been numerous studies on 

changing class distribution (Laurikkala, 2001 and Estabrooks et al., 2004). Also, Weiss (2003) 

investigated the effect of class distribution on decision tree classification by changing class 

distributions to achieve different ratios and measuring performance using accuracy and Area 

Under the Curve (AUC). Three basic techniques are used in balancing classes namely, heuristic 

and non-heuristic under-sampling, heuristic and non-heuristic over-sampling, and advanced 

sampling. Japkowicz (2000) compared multiple balancing methods and concluded that both 

under-sampling and over-sampling are very effective methods for dealing with the class 

imbalance problem.  

 

Over-sampling 

One simple over-sampling method is random over-sampling. Its mechanism is adding a 

set E of additional instances (i.e., instance duplicates) randomly sampled from the minority class 

to the original set, S. In this way, the number of total instances of the minority classis increased 



www.manaraa.com

6 

 

by E and as a result, the class distribution is more balanced. This provides a mechanism for 

varying the degree of class distribution balance to any desired balance level. Over-sampling does 

not increase information; instead by replication it raises the weight of the minority samples. The 

problem with over-sampling is that an over-fitting problem will generally occur,  which causes 

the classification rule to become too specific; even though the accuracy for training set is high, 

the classification performance for  new test datasets will likely be worse. By appending 

duplicated data to the original data set, some of the data copied becomes too specific and 

classifiers will produce multiple clauses for the duplicate data (Kubat and Martin, 1997).  

To avoid the over-fitting problem in over-sampling, Chawla et al. (2002) suggested a 

heuristic over-sampling method, called Synthetic Minority Over-sampling Technique (SMOTE), 

which has worked well in various applications. SMOTE is considered to be one of the state-of-

the-art approaches for imbalanced learning. This method generates synthetic data based on the 

feature space similarities between existing minority instances considering the K-nearest 

neighbors for each minority instance. In order to create a synthetic instance, it finds the K-nearest 

neighbors of each minority instance, randomly selects one of them, and then multiplies the 

corresponding feature vector difference with a random number between 0 and 1 to produce a 

new minority instance in the neighborhood. Figure 1 shows an example of the SMOTE 

procedure. This synthetic over-sampling avoids the over-fitting problem and also causes the 

decision boundaries for the minority class to move towards the majority class. As a variant of 

SMOTE, Han et al. (2005) introduced Borderline_SMOTE which only oversamples synthetic 

instances of the minority class near the decision boundary since those instances are most likely to 

be misclassified. Results were better when compared to standard SMOTE and random over-

sampling using Decision Tree classification. He et al. (2008) introduced a synthetic sampling 
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method, Adaptive Synthetic Sampling (ADASYN), that uses a density distribution of the 

minority instance as a criterion to automatically decide the number of synthetic samples 

generated for each minority instance. ADASYN generates a new instance by calculating the class 

ratio of the minority and majority instances in the K-nearest neighbors of each minority instance. 

As a result, more synthetic instances are generated for minority class instances that are harder to 

learn compared to instances that are easier to learn. This approach improved learning with 

respect to the data distributions on the imbalanced data sets by reducing the bias of class 

distribution and by adaptively shifting the decision boundary to put more attention on instances 

difficult to learn.  

 

 

                                              

 

 

 

( )

 is a random number between 0 and 1

syn i knn ix x x x 



   
 

 

Figure 2.1 Synthetic over-sampling example by SMOTE algorithm 

 

 

Under-sampling 

While over-sampling adds instances to the original data set, under-sampling removes 

instances from the majority class while keeping all instances of the minority class due to rareness 

Generated synthetic instance synx  

 
One of the K-nearest neighbors (K=5), knnx  

Minority instance, ix  
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of information. A simple method for under-sampling the majority class is random under-

sampling, a non-heuristic method that balances class distributions by selecting and removing 

majority instances randomly. Several heuristic under-sampling methods have been proposed 

from data cleaning in recent years. They are based on either of two different noise model 

hypotheses: one is that instances near to a decision boundary between two classes are considered 

noise, while the other considers that instances having more neighbors from different classes are 

noise.  

Since random under-sampling leads to losing potentially useful data, some heuristic 

under-sampling methods try to remove superfluous instances which will not affect the 

classification accuracy of the training set. Hart (1968) introduced a training set condensation 

algorithm, Condensed Nearest Neighbor Rule (CNN), in order to find a consistent subset of a 

sample set which can correctly classify all of the remaining instances in the training set. The 

algorithm uses two bins, called S and T. Initially, the first sample of the training set is placed in 

S, while the remaining samples of the training set are placed in T. Then one pass through T is 

performed. During the scan, whenever a point in T is misclassified by using S as the training set, 

it is transferred from T to S. After classification, process is repeated until no points are 

transferred from T to S. The motivation for this heuristic is that misclassified data lies close to 

the decision boundary. In the same manner, Tomek (1976) proposed an effective method to 

eliminate data in the overlapping regions. Given two instances x and y that have a different class 

label and are separated by a distance ),( yxd , the pair (x, y) is called a Tomek link if there is no 

instance z such that ),(),( yxdzxd  or ),(),( yxdzyd  . Instances participating in Tomek links 

are considered either borderline or noisy. Kubat and Matin (1999) proposed one-sided sampling 

(OSS) for detecting less relevant instances for learning. This technique is intended to keep all 
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minority instances since they are rare, (even though some of them can be noisy) and instead 

prune out only majority instances. Initially it starts with a subset(C)  of training set (S) that 

contains all minority instances, SC  , and using a 1-Nearest Neighbor rule using instances in 

C,  classify the instances in S. Afterwards, all misclassified instances are moved to C, then all 

majority instances participating in Tomek links from C are removed since they are believed to be 

borderline and/or noisy. Wilson (1972) introduced the Edited Nearest Neighbor Rule (ENN) to 

remove any instance whose class label is different from the class of at least two of its three 

nearest neighbors. The idea behind this technique is to remove the instances from the majority 

class that are near or around the borderline of different classes based on the concept of nearest 

neighbor (NN) in order to increase classification accuracy of minority instances rather than 

majority instances. 

 

 

2.1.2 Adjusting classifiers to imbalanced data sets 

Rebalancing the data distribution through either over-sampling or under-sampling has 

had some success, but the methods are usually computationally expensive. Also, changing class 

distribution at the data level does not always lead to better classification performance. A 

classifier is not always influenced by class distributions. Drummond and Holte (2003) observed 

that over-sampling did not produce effective improvement in performance or there was no 

change in classification. On the contrary, over-sampling prunes less than under-sampling using 

the default parameters for the C4.5 algorithm. A modification of the parameter settings of C4.5 

improved classification performance and avoided the over-fitting problem during over-sampling. 

Thus, while sampling methods have tried to balance class distribution by considering the 

proportions of class instances in the original data distribution, other approaches have been 
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introduced for imbalanced data learning. One is the cost sensitive method, which uses a cost 

matrix to penalize misclassification of instances, as shown in Table 2.1. Typically, no costs are 

applied to the correctly classified cases and the cost of misclassifying minority cases is higher 

than that of majority cases. The objective of this strategy is to minimize the cost of 

misclassification. In some applications, cost sensitive techniques have performed better than 

sampling methods (McCarthy et al., 2005 and Liu et al., 2006).  

 

 

Actual 
Predicted 

Class i Class j 

Class i 0 ijc  

Class j jic  0 

 

Table 2.1 Cost matrix 

 

 

MetaCost (Domingos, 1999) is another method related to cost-sensitive learning. It 

estimates class probabilities using Bagging and then re-labels the training instances with their 

minimum expected classes, and in the end, relearns a model using the modified training set. 

Based on the weight update rule of AdaBoost (Freund & Schapire, 1997) for misclassified 

instances at an iterative learning, Fan et al. (1999) proposed a discriminant weight update method 

for misclassified instances for imbalanced datasets, which is called Adacost. Their approach is to 

assign larger weights for misclassified instances belonging to the minority class than those 

belonging to the majority class and as a result, Adacost has performed empirically better in 

lowering cumulative misclassification costs than AdaBoost.  
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Some classifiers such as the Naïve Bayes classifier or some Neural Networks use a score 

to show the degree to which an instance belongs to a class. This type of ranking can be used in 

alternative classifiers by changing the threshold for an instance belonging to a class (Weiss, 

2004). For biasing the discrimination procedure, Barandela et al. (2003) proposed a weighted 

distance function in classification instead of altering the class distributions in terms of a nearest 

neighbor (NN) classifier. Supposing that ( )ed   is the Euclidean metric, newx  a new instance to 

classify, 0x  a training sample from class i, in the number of instances of class i and m the 

dimensionality of the input variable, a weighted distance function, ( )wd  is defined as: 

1/

0 0( , ) ( / ) ( , )m

w new i e newd x x n n d x x  . This could assign greater weighting factors to majority 

instances than minority instances; consequently, producing smaller distances to instances of the 

minority class than distances to those of the majority class. As a result, the neighbors of the new 

instances are found among the minority instances, increasing the value of the geometric mean (g-

mean).  For the SVM classification algorithm, this biasing approach pushes a hyperplane further 

away from the minority (positive) class for imbalanced datasets. Wu and Chang (2003) proposed 

a biasing algorithm to change the kernel function. Biasing classification algorithms in SVM 

using larger penalty constants associated with the minority class made misclassification errors 

for the minority instances much costlier than errors for majority instances (Veropoulos et al., 

1999). Huang at el. (2004) proposed a Biased Minimax Probability Machine (BMPM) to resolve 

learning for imbalanced datasets. Given the mean and covariance matrices of the majority and 

minority classes, BMPM formulates an optimization problem to find the decision hyperplane by 

adjusting the lower bound of the accuracy for the classification of the future data. For example, if 

the objective function is to maximize the accuracy of classification for the minority class, the 
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optimization tries to maximize it by setting the lower bound of the classification accuracy for 

both classes. Achieving the worst case accuracy for the minority can be avoided while 

maintaining the acceptable accuracy level of the majority class in imbalanced data learning.    

One-class learning is an alternative to discrimination where the model is created based on 

the instances of the target class alone. The main idea is that boundaries between two classes are 

estimated from data of one class (the target class) so that this approach is not sensitive to the 

class distribution in the training set. A boundary around the target class is defined in such a way 

that most of the target objects are included and at the same time the chance of accepting outlier 

objects is minimized.  For instance, Kubat et al. (1998) introduced the SHRINK algorithm 

following this general principle and applied it to detecting rare oil spills from satellite radar 

images. The goal was to find the classification rule that best identifies the positive examples (oil 

spills) using a g-mean measure. Assuming that the negative (majority) instances outnumber 

positive (minority) instances, the algorithm labeled the mixed regions as positive (minority). This 

alters the learner‟s focus: search for the best positive region, one with the maximum ratio of 

positives to negatives. Raskutti and Kowalczyk (2004) studied one-class learning with highly 

imbalanced dataset learning using a SVM classifier. They showed that one-class learning is 

useful for extremely imbalanced datasets with a high dimensional noisy feature space.   

 

2.1.2 Ensemble learning methods 

 

Ensemble learning is motivated by the information loss that occurs in under-sampling. In 

ensemble learning, multiple classifiers are generated by training subsets from the original 

dataset. In the end, the classifiers are combined in a learning process and the final classification 

is determined by a voting scheme. Boosting and Bagging (Boostrap aggregating) are the most 
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successful approaches. Most boosting algorithms use iteratively learning weak classifiers that 

have been produced by placing different weights on the training instances. In each iteration, 

boosting increases weights for incorrectly classified instances and decreases weights for 

correctly classified ones, placing more attention on the incorrectly classified instances for the 

next iteration. Rare-Boost scales false-positive instances in proportion to how well they are 

differentiated from true-positive instances and scales false-positive instances in proportion to 

how well they are distinguished from true-negative instances (Joshi et al., 2001). SMOTEBoost 

(Chawla et al., 2003) addressed the issue that boosting may produce an over-fitting problem as in 

over-sampling. Instead of updating weights to change distributions of the training dataset, it adds 

new instances of the minority class using SMOTE. Chan and Stolfo (2001) proposed another 

ensemble method conceptually similar to a Bagging approach. They conducted some preliminary 

experiments to identify a desired class distribution that avoids the class imbalance problem, and 

then resampled to make multiple training sets based on the desired class distribution. Each 

training set contained all instances of the minority class and a subset of the majority instances. 

To use all instances of the majority class, each majority class instance appeared in at least one 

training set. Finally, the learning algorithm was applied to each training set and a composite 

learner was created from the classification results of all classifiers.  

Recently, two algorithms, EasyEnsemble and BalanceCascade have been introduced (Liu 

et al., 2006). The strategy of these two methods is to make several training sets by keeping all the 

minority instances and under-sampling several subsets from the majority class. With replacement 

in sampling of the majority class, they overcome potential of information loss of the majority 

class. EasyEnsemble independently samples (with replacement) from the majority class several 

subsets whose size is equal to the size of the minority class and generates the individual 
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classifiers for the subsets. In other words, EasyEnsemble generates T  balanced training sets. The 

output of learning the i
th

 training set is an AdaBoost classifier Hi (i = 1,..,T). Then all generated 

classifiers, Hi=1,…,T, are combined for the final decision. The BalanceCascade method reduces the 

size of the majority class iteratively, based on the most recent classifier. This algorithm uses a 

trained classifier to guide the sampling process for subsequent classifiers. Initially, it samples a 

balanced training set like EasyEnsemble. After the Adaboost ensemble is trained with the initial 

balanced training set, all majority instances that have been correctly classified are removed from 

the majority class. In this manner, the majority training set is reduced after every AdaBoost 

ensemble, Hi, is trained. This sampling strategy reduces the redundant information of the 

majority class and explores as much useful information as possible. 

Besides the methods already discussed, other approaches have been used to address the 

class imbalance problem.  For example, feature selection was used to select important features 

for the minority and majority classes separately and then explicitly combine them (Zheng et al. 

2004). 

 

2.2 Performance Measures for Imbalanced Data Learning 

Performance measures are used to assess the effectiveness of learning methods. In 

general, accuracy (or error rate) is the most common metric for most classification tasks and is 

given by 

( )

( )

TP TN
Accuracy

TP FN FP TN




  
 .                                            (2.1) 

For a two class classification problem, classification performance is evaluated by a confusion 

matrix (contingency table) as seen in Table 2.2.  
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However, for a skewed class distribution, accuracy is not suitable to evaluate imbalanced 

data learning because the overall accuracy may be dominated by the classification accuracy of 

the majority class.  For this reason, other metrics have been used, namely, precision, recall, F-

measure, geometric mean (g-mean) of the accuracy on the majority class and the minority class, 

and the maximum sum (MS). These metrics are based on the confusion matrix (see Table 2.2). In 

this research, positive and negative correspond to the minority and majority class, respectively.  

 

 
Prediction 

Positive Negative 

Real 
Positive TP (True Positive) FN (False Negative) 

Negative FP (False Positive) TN (True Negative) 

 

Table 2.2 Confusion matrix for performance evaluation 

 

Intuitively, precision is a measure of how many instances were correctly labeled as 

positive and is calculated as 

( )

TP
precision

TP FP



.                                                        (2.2) 

Recall is a measure of how many instances of the positive class were labeled correctly and is 

defined as 

( )

TP
recall

TP FN



  .                                                       (2.3) 

Unlike accuracy and error, precision and recall are both less sensitive to changes in data 

distributions. As an assessment of the accuracy for the positive class, precision is somewhat 

sensitive to data distributions, while recall is not. Recall gives no insight into how many 
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instances are incorrectly classified as positive. Similarly, precision does not tell us how many 

positive instances are incorrectly classified. Nevertheless, when used properly, precision and 

recall can effectively evaluate classification performance in imbalanced learning scenarios.  

The F-measure metric combines precision and recall as a measure of the effectiveness of 

classification in terms of a ratio of the weighted importance on either recall or precision as 

determined by the   coefficient set by the user and is given by 

2

2

(1 ) recall precision
F measure

recall precision





  
 

 
 .                                 (2.4) 

where   is a coefficient to adjust the relative importance of precision versus recall. As a result, 

F-measure provides more insight into the functionality of a classifier than the accuracy metric.  

Another metric, the g-mean evaluates the degree of inductive bias in terms of a ratio of 

positive accuracy and negative accuracy and is defined as 

TP TN
g mean

TP FN TN FP
  

 
  .                                         (2.5) 

Maximum sum (MS) is used as an evaluation metric that gives equal weight to the 

classification accuracy of the positive and the negative class and is given by   

TP TN
MS

TP FN TN FP
 

 
.                                              (2.6) 

Receiver Operating Characteristic (ROC) analysis from signal detection theory is also 

used as a metric for imbalanced data learning. The area under the ROC curve (AUC) assesses 

overall classification performance (Bradley, 1997). AUC does not place more emphasis on one 

class over the other, so it is not biased against the minority class. In addition, Precision-Recall 
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(PR) curves (Davis & Goadrich, 2006) and Cost curves (Holte & Drummond, 2006) have been 

used in other to evaluate imbalanced dataset learning of classifiers and also visualize the 

performance. 

 

2.3 Summary and Research Scope 

Although previous methods have in some cases produced satisfactory results for 

imbalanced data learning, some of them may not be practical to implement or may conflict with 

a specific classification learning algorithm. Imbalanced data learning methods need to consider 

performance and interaction with classification algorithms. 

In this research, we examine the class imbalance problem focusing on a specific 

classification algorithm, SVM and a comparison of methodologies from a perspective of 

effectiveness (the ability to accurately classify an unknown dataset) and efficiency (the speed of 

classifying data). Although SVM is more accurate on moderately imbalanced data compared 

with other standard classifiers, an SVM is also generally prone to generate a classifier that is 

extremely biased toward the majority class. To cope with the imbalance dataset learning with a 

SVM, the previously discussed sampling strategies could be used, but would introduce 

significant degradation in classifier performance. For example, while over-sampling keeps all 

existing information of a learning dataset and solves the class imbalance problem by adding 

information of the minority class, processing of learning training datasets could be costly if many 

instances are over-sampled to handle imbalanced datasets.  

Recent work on imbalanced learning with a SVM has focused on improving  

classification performance (Akbani et al., 2004, Raskutti & Kowalczyk, 2004). However, the  
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efficiency of imbalanced data learning was not fully considered. In this research, we present a 

sampling methodology for the problem of class imbalance considering both effectiveness and 

efficiency in learning with a SVM. In this research, the base assumption is that classification 

accuracies of both classes are equally important.  
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CHAPTER 3 CLASS IMBALANCE PROBLEM WITH 

SUPPORT VECTOR MACHINE LEARNING 

 

 

3.1 Support Vector Machine (SVM) Classifier  

A SVM uses a hypothesis space of linear functions in a high dimensional feature space, 

trained with a learning algorithm from optimization theory that implements a learning bias 

derived from statistical learning theory. This learning strategy was introduced by Vapnik (1995) 

and has been widely used in the machine learning community due to its theoretical foundations 

and practical performance in applications ranging from image retrieval (Tong & Chang, 2001), 

handwriting recognition (Cortes, 1995) to text classification (Joachims, 1998). In classification 

tasks, SVM tries to find an efficient way of learning good separating hyperplanes in a high 

dimensional feature space that maximizes the margin between the two classes.   

The simplest model of a SVM starts with a maximal margin classifier. It works only for 

linearly separable cases in feature space, so it assumes that there is no training error. Generally it 

may not be applied to separation of many real datasets. If the data are noisy, no separation exists 

in feature space. Nonetheless the maximal margin classifier provides key characteristics of this 

kind of learning machine. First, this can be viewed as a convex optimization problem: 

minimizing a quadratic function under linear inequality constraints. Suppose that we have a 

training dataset, },{ ii yx  for  ,,......,1 li   where x is a vector in the input space NRS   and 

iy denotes the class label taking either +1 or -1.  
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Figure 3.1 Linear separating hyperplanes for the separable case  

 

As shown in Figure 3.1, the points x which lie on the hyperplanes satisfy 

0 bxw , where w is normal to the hyperplane, wb /  is the perpendicular distance from 

the hyperplane to the origin, and w  is the Euclidean norm of w. For the linearly separable case, 

the support vector algorithm looks for the separating hyperplane with the largest margin. 

Suppose that all the training data meet the following constraints.  

1 bxw i  for 1iy                                               (3.1) 

1 bxw i   for 1iy                                               (3.2) 

The margin  is defined as distance between two hyperplanes, 1:1  bxwH i  and 

1:2  bxwH i with a normal w. Since these two hyperplanes are parallel and have the same 

normal, the margin distance that separates them is given by 

Origin 

}0|{  bxwx

}1|{:1  bxwxH

}1|{:2  bxwxH

w

b margin 

1H

2H
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                                        (3.3) 

Each instance that falls on one of the two hyperplanes is  called a support vector (SV).  

The SVs in Figure 3.1 are circled. Given this geometric relationship, finding the hyperplanes 

with the maximum margin in feature space can be formulated as a mathematical programming 

problem. For a linearly separable training data )).(),....,,(( 11 ll yxyxS  , the hyperplane producing 

maximum margin is found by formulating the minimization optimization problem as follows: 

 ,....,1                        

,1)(   subject to 

2/          minimize 
2

li

bxwy

w

ii



                                            (3.4) 

We now switch to a Lagrangian formulation of the problem with the Lagrange 

multipliers, 0i  . By doing this, the constraints in Equation (3.4) are replaced by constraints on 

the Lagrangian multiplier themselves, which are easier to handle. The primal Lagrangian is given 

by   





l

i

iiiP bxwywbwL
1

2
]1)([

2

1
),,(  , 0i  .                     (3.5) 

Then we must minimize ),,( bwLP  with respect to w and b, subject to 0i  . This is a 

convex quadratic programming problem since the objective function is itself convex, and those 
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points which satisfy the constraints also form a convex set. This indicates that this problem can 

be equally solved with its corresponding dual problem, subject to the derivatives of ),,( bwLP  

with respect to w and b, 







 l

i

iii xyw
w

bwL

1

0
),,(




,         



l

i

iii xyw
1

                           (3.6) 







 l

i

iiy
b

bwL

1

0
),,(




,           



l

i

iiy
1

0                               (3.7) 

also subject to the constraints, 0i . Since these are equality constraints in the dual 

formulation, the dual can be substituted (3.6) into (3.5) and results in   
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     (3.8) 

The primal ( PL ) and dual ( DL ) come from the same objective function but with different 

constraints and the solution is found by minimizing PL or maximizing DL . Given that we want to 

maximize DL  with respect to i , the optimization problem can be formulated as  

. ,....,1   ,0                                     

,0                 subject to      

2

1
)(          maximize      

1i

1,1

li

y

xxyyL

i

l

ii

l

ji

jijiji

l

i

iD





















                   (3.9) 
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In solving this problem, the positive values for each i gives 



l

i

iii xyw
1

**   which 

generates the maximal margin hyperplane with margin 
2

*/1 w . Those points whose i  is 

positive are the SVs (and are located on H1 and H2 in Figure3.1), while other points‟ i  are zero.  

Since the value of b does not appear in the dual problem, *b is found making use of the 

primal constraints. The optimal solutions * , ),( ** bw  must satisfy 

libxwy iii ,...,1       ,0]1([ ***  . This is the Karush-Kuhn-Tucker (KKT) 

complementary optimality condition. With this condition, b can be computed. The hyperplane 

decision function can then be written as 





l

i

jiii bxxysignxf
1

** ).()(                                (3.10)                                  

This implies that support vectors are the critical points in the training set and lie closest to 

the hyperplane producing the maximum margin of two different class labels.   

So far we have considered only a separable case of training data. How can we extend 

these strategies to deal with a non-separable case? This is done by introducing a positive slack 

variable, ,i  li ,....,1 . Constraints become: 

ii bxw  1  for 1iy                                   (3.11) 

ii bxw  1  for 1iy                                   (3.12) 
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Figure 3.2 Linear separating hyperplanes for the non-separable case 

 

So when an error occurs, the corresponding i  must exceed unity, so i i is the upper 

bound on the number of training errors. Hence a natural way to assign an extra cost for errors is 

to change the objective function to be minimized from 2/
2

w  (see equation 3.4) to 

 


l

i iCw
1

2
2/  , where C is a penalty parameter chosen by the user. This is the concept behind 

soft-margin SVMs. Introducing i as the Lagrange multipliers of the i , the Lagrange (primal) 

function is:  





l

i

ii

l

i

iiii

l

i

iP bxwyCwL
111

2
]1)([

2

1
  .              (3.13) 

For minimizing the Lagrange (primal) problem with respect to w, b, and i , setting the 

respective derivatives to zero, we get equations (3.6) , (3.7) above, and  

iC ii       ,  .                                                        (3.14) 
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By substituting the derivatives into the primal problem, the corresponding dual problem 

is formulated as 

. ,....,1   ,0                                     

,0                 subject to      

2

1
)(          maximize      

1i

1,1

liC

y

xxyyL

i

l

ii

l

ji

jijiji

l

i

iD





















                   (3.15) 

With the derivatives and the KKT condition, equations (3.16)-(3.18),  we obtain 

0}1)({  iiii bwxy                                        (3.16) 

0ii                                       (3.17) 

0)1()(  iii bwxy                                        (3.18) 

 

The solution is given by 



Ns

i

iii xyw
1

 , where Ns is the number of SVs which non-zero 

coefficient i̂ . Among the SVs, some lie on the edge of the margin ( 0ˆ i ) that is characterized 

by Ci  ̂0 from equations (3.17) and (3.14) and the remaining ( 0ˆ i ) have Ci ̂ . 

Therefore, points on the wrong side of the boundary are SVs and points on the correct side of the 

boundary are also SVs. 

A SVM is a linear classifier, but in most cases, it is practically restrictive. SVM can be 

easily extended to a nonlinear classifier by mapping the input space into a high dimensional 

feature space through a kernel function, ),( ji xxK  which computes the dot product of the data 

points in the feature space H, that is,  

)().(),( jiji xxxxK     .                                      (3.19) 
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Functions that satisfy Mercer‟s theorem (Burges, 1998) can be used as dot products and thus can 

be used as kernels. Common kernel functions include Linear: ( , ) ( )i j i jK x x x x  , Polynomial: 

( , ) ( 1)d

i j i jK x x x x   and Gaussian Radial-based :
22

2/
),(

ji xx

ji exxK


 . 

Thus the nonlinear separating hyperplane can be found formulated as an optimization 

problem given by  

. ,....,1   ,0                                     

,0                 subject to      
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1
)(          maximize      
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                (3.20) 

The corresponding decision function is  

 





l

i

jiii bxxKysignbzwsignxf
1

).)(())()(            (3.21) 

 

 

3.2 SVMs and the Skewed Boundary 

 

As noted previously, imbalanced data sets cause a bias in the results of a SVM. Akbani et 

al. (2004) have summarized three reasons why a skewed boundary occurs in SVM classification 

for imbalanced data sets: (1) positive (minority) instances lie further from the ideal boundary 

compared with negative (majority) instances, (2) the weakness of the soft-margin SVMs and (3) 

the imbalanced SV ratio. For the third reason, according to the KKT conditions in solving the 

optimization problem in SVM, the values for i must satisfy 
1

0
n

i ii
y


 . Since the values for 

the minority class tend to be much larger than those for the majority class and the number of 

minority SVs substantially smaller, the nearest neighborhood of a test point is likely to be 
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dominated by majority SVs. That means that the decision function is more likely to classify a 

boundary as majority. The second reason, the weakness of the soft-margin SVMs, is an inherent 

weakness in coping with imbalanced data learning. For separable cases, the imbalance of class 

distribution rarely influences the performance of SVMs because all the slack variables i are 

equal to zero (equations 3.11 and 3.12). Therefore, there is no contradiction between the capacity 

of the SVMs and the classification error. However, for non-separable cases, soft-margin SVMs 

should achieve a trade-off between maximizing the margin between two classes and minimizing 

the classification error. Typically much more majority instances appear in the overlapping area 

than minority ones. So, the optimal hyperplane will be skewed on the minority class side in order 

to reduce the overwhelming errors of misclassifying the majority class. If C is not very large, 

SVMs simply predict most of minority instances as majority instances to make the margin as 

large as possible, making the total misclassification cost as small as possible.   

Several methods for SVMs for imbalanced data learning have been studied (Karakoulas 

& Taylor, 1999; Lin et al., 2002). At the data level, rebalancing approaches such as over-

sampling (i.e. SMOTE) and under-sampling have been widely used for SVM to cope with 

imbalanced datasets. Veropoulos et al. (1999) suggested using different penalties for 

misclassification of the classes. Amari and Wu (1999) proposed using conformal transformation 

of the kernel matrix to enlarge the separation between two classes. In the first step, it finds the 

separating location between two classes through standard SVM learning. In the second step, the 

primary kernel matrix is conformally scaled to give a wider separation. Separation is controlled 

by the SVs, so the new kernel matrix is enlarged at the position of SVs.   

Another approach is the one-class SVM (Scholkoft and Smola, 2002). This uses only 

minority instances for learning. Its original application is detecting outliers that differ from most 
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of the data within a dataset. This determines a hyperplan in feature space that separates most of 

the data from the origin. It completely ignores information of the majority class: Instead, only 

using one class, the minority class , it defines a hyperplane that separates most of data belonging 

to the class from the origin.   

 

3.3 Problems associated with SVM classifier for imbalanced data  

 

 When focusing on approaches at the data level (rebalancing the data distribution), there 

are two significant problems associated with a SVM classifier, namely,  

 

1. Over-sampling methods significantly increase the dataset size. 

2. An optimal ratio of class distribution is empirically determined by grid search. 

 

To address these problems, we propose a new sampling method at the data level for 

imbalanced data learning. Instead of rebalancing the entire imbalanced dataset, a selective 

sampling method is proposed that results in a relatively small number of instances. We expect 

that a small set of representative instances of an imbalanced dataset could determine the desired 

decision boundary by maintaining the same or achieving even better performance for the class 

imbalance problem as compared to existing rebalancing methods.  The merits of this approach 

include: (1) skipping empirical search that is necessary in sampling methods such as optimal 

ratios of class distributions and (2) avoiding producing a large training set that would lead to 

long training times for a SVM. If this approach performs well as compared to some current 

methods, it will provide an alternative method to solve the class imbalance problem with the 

advantage of reducing learning time for a SVM.  
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3.4 Effectiveness of rebalancing class distribution 

For imbalanced and highly overlapped class data, sampling methods such as over-

sampling or under-sampling are very effective in terms of the optimization process in a soft-

margin SVM. In order to illustrate the effect of sampling methods in rebalancing class 

distribution, we examine the boundary movement in two common methods, SMOTE over-

sampling and Random under-sampling. In this example, a Gaussian kernel function is used for 

SVM classification.  

First, we generated a simple structure of a synthetic dataset showing a typical class 

imbalance problem, which could be represented in 2-dimensional space as shown in Figure 3.3. 

The minority class having 40 instances is marked with „o‟ and the majority having 400 instances 

with „•‟ (a class ratio of 1:10).  
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Figure 3.3 Example of class imbalance problem on SVMs 
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After classification, almost all majority instances were correctly classified, while many 

minority instances were classified as the majority class. This example illustrates a typical class 

imbalance problem caused by soft-margin SVM algorithms. In other words, an optimal 

hyperplane results from the trade-off between maximizing the margin of the minority and the 

majority class and minimizing misclassification costs in the feature space. To improve the 

accuracy for the minority class, we need to move the boundary toward the majority class side. To 

illustrate this, we applied two rebalancing sampling methods, SMOTE and random under-

sampling, which will be referred to as SVM-SMOTE and SVM-RU, respectively.  

Using SVM-SMOTE, the number of synthetic instances to achieve the desired class 

balance is unknown and empirical studies must be performed. Minority instances are 

oversampled gradually with 100%, 300%, 500% and 1000% increases in minority instances. 

After rebalancing by SMOTE, we observed that the boundary gradually shifted toward the 

majority class as minority instances are increased as shown in Figure 3.4 (a) to (f).    

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 (a) 100% increment  (b) 200% increment  
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circle(○): minority instances, dot(•): majority instances, cross(+): synthetic instances by SMOTE 

 

Figure 3.4 Boundary movements by SMOTE algorithm 

 

Though SVM-SMOTE shifts the decision boundary, it comes at a penalty of increasing 

the size of the dataset as mentioned in the previous section.  Assume that Np is the number of the 

positive (minority) instances and Nn the number of the negative (majority) instances, typically 

SVM takes 
3(( ) )O Np Nn time for learning in the worst case (Burges, 1998). For imbalanced 

data learning, SVM-SMOTE will take 3(( (1 ) ) )smoteO Np R Nn   where smoteR is an optimal ratio 

(c) 500% increment  (d). 1000% increment  

(e) 1700% increment (f) 2000% increment 
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of size of increasing instances. Here smoteR is determined empirically. What is worse, over-

sampling also increases instances in the complex region between classes. By generating 

instances near or in overlapping areas which might be misclassified, classification is more 

difficult. In solving the optimization problem in the SVM algorithm, many cases can violate 

KKT conditions. As a result, this will requires much more time to convergence of optimization 

in SVM algorithms in spite of its good performance. So, if a dataset is extremely imbalanced and 

overlapped, over-sampling through the SMOTE algorithm would not be efficient. In regard to 

the problems introduced by an over-sampling approach, an under-sampling method is preferred 

to over-sampling methods and is commonly used.  

SVM-RU uses random under-sampling to rebalance the class distribution. Instead of 

increasing minority instances, decreasing the number of the majority instances will make an 

optimal hyperplane in terms of the trade-off between maximizing the margin and minimizing 

misclassification costs. Figure 3.5 below shows the boundary movement as the number of the 

majority instances removed randomly is increased.  
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(a)  No under-sampling (b). 25% decrement 
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Figure 3.5 Boundary movements by random under-sampling 

 

Similar with SVM-SMOTE, random under-sampling causes a shift in the decision 

boundary towards the majority class. Considering time complexity in learning the dataset, SVM-

RU takes 3(( ) )uO Np Nn R  which is quicker than SVM with the original training set since 

uNn R is approximately equal to Nn . Because majority instances have been randomly 

eliminated, it may not be easy to determine  an optimal size of training set for rebalancing. Also 

(c). 50% decrement (d). 80% decrement 

(e). 85% decrement (f). 90% decrement 
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similar to SVM-SMOTE, the optimal desired class distribution for imbalanced data learning is 

unknown and needs to be determined empirically 

3.5 Hypotheses 

Given the nature of imbalanced datasets as previously discussed, two hypotheses were 

formulated to address effectiveness and efficiency issues in imbalanced data learning for SVMs. 

 

Hypothesis 1 

 

A relatively small number of instances from an imbalanced training set are needed to 

obtain good performance in solving the class imbalance problem using a SVM. 

 

Hypothesis 2 

 

A smaller subset within the set of support vectors can be found that produces a 

better boundary using a SVM. 

 

 

Hypothesis 1 is related to the premise that the boundary between the major and minor 

classes is strongly influenced by a relatively small number of instances.  The inference is that a 

potential down-sizing of learning sets will lead to significant improvements in classifier 

performance.  Hypothesis 2 is based on the expectation that there is a smaller group of SVs that 

will provide a near optimal classification of the classes and improve the efficiency of learning. If 

such a set of SVs exist, then a metaheuristic-based sampling approach could be used to select the 

vectors. 
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CHAPTER 4 SELECTIVE SAMPLING USING A GENETIC ALGORITHM 

 

 

This chapter presents a selective sampling method based on a Genetic Algorithm for 

imbalanced data learning with a SVM. Instead of rebalancing new training data distributions for 

learning, we investigate how this selective sampling method performs on class imbalance 

problems. Instance selection is a form of under-sampling in which specific instances are selected 

based on some criteria. We use a Genetic Algorithm to perform selective sampling of the 

majority instances and retain all minority instances because they are assumed to be informative. 

4.1 SVMs for Large-Scale Datasets 

Training a SVM involves solving a constrained quadratic programming (QP) problem, 

requiring a large memory allocation and resulting in long training times for large-scale data. Two 

issues in using SVMs with large scale data are the generation of the kernel matrix and data 

overlapping. With a dataset size of N, an N×N kernel matrix is generated. Furthermore, storing 

the entire kernel matrix in memory is problematic due to computer memory limitations. The 

second issue is the increase in classification difficulty when many class data are overlapped.  

Due to large-scale data problem associated with SVMs, many studies have examined 

methods for reducing training samples to achieve relatively fast SVM classification. For 

example, Shin and Cho (2003) proposed a selection method for selecting patterns from training 

data near the decision boundary based on the neighborhood properties. Zhang and King proposed 

a  -skeleton algorithm to identify SVs. Almeida et al. (2000) employed K-means clustering to 

select patterns from a training set. Lee and Mangasarian (2001) selected a subset of training 

instances using random sampling to reduce training sample size. Huang and Lee (2004) showed 
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that uniform random sampling is an optimal robust selection scheme in terms of several 

statistical criteria. Han et al. (2008) proposed a novel pre-extracting method for SVM 

classification using a non-parametric k-NN rule called relative neighborhood graph (RNG). 

Given that SVs are critical points in learning classification boundaries for a SVM, these methods 

extract significant samples which are likely to become SVs prior to the learning process. Some 

variant SVM methods include modifications of the SVM algorithm. For example, some 

decomposition methods break the large QP problem into a series of smaller QP sub-problems 

(Osuan et al., 1996) and Sequential Minimal Optimization (SMO) by Platt (1999).  lightSVM  is 

an implementation of an SVM learner for large scale tasks that uses the decomposition idea of 

Osuan et al.  

To address the difficulties in learning a large-scale dataset with a SVM, methods which 

significantly reduce the size of the training set will have better computational performance (i.e., 

more efficient classification). Some form of instance selection in which instances are selectively 

sampled is consistent with the concept of efficiency.    

4.2 Genetic Algorithm for Under-sampling of the Majority Class 

The Genetic Algorithm (GA) metaheuristic was introduced by Holland (1973) as an 

evolutionary algorithm that uses techniques inspired by evolutionary biology such as inheritance, 

mutation, natural selection and recombination (or crossover) (Goldberg, 1989). In diverse 

application areas, GAs have been used extensively to solve combinatorial optimization problems 

to find a good solution even though it may not be optimal. In data mining, GA can improve the 

behavior of a predictive model for classification performance (accuracy) and interpretability 

through selective sampling of training sets.  
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Briefly reviewing general GAs, the main characteristics of a GA include: 

 A population of individuals  The population in the k
th

 generation,
kP , contains a set of 

individuals. Each individual represents a possible solution and has a unique configuration 

of parameters called a chromosome, C. 

 Fitness function An individual is tested and assigned a level of fitness that indicates the 

degree to which it is a good solution. Fitness levels are used to decide which individuals 

should be selected to produce the next generation of individuals. The better the fitness of 

an individual, the more likely it is to be selected to be a parent for the next generation. 

 GA operators The next generation of individuals is produced using two genetic 

operators after selecting the parents. The first operator, recombination, exchanges a part 

of the parents‟ genes (i.e., subsets of the parent members). The second operator, 

mutation, changes a small subset of an individual gene in a random fashion. The 

combination of these operators with parent selection and a fitness function enables the 

GA to evolve towards a better solution. 

 Termination of the GA The stopping condition is based on determining if the quality of 

the members of the population is satisfactory or if a pre-determined number of iterations 

have been completed. 

 

In order to use GA to select majority instances, we first define the solution representation 

(i.e., chromosome) as a set of binary digits (0: if an instance is not selected and 1: if an instance 

is selected). Given that selective sampling is performed only for the majority class, only 

instances of the majority class are represented in a chromosome,  
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The binary chromosome can be represented as a vector of genes  

],,,,[ 321 NggggC  , where N is the number of the majority instances, ig is 0 (not selected) 

or 1 (selected). GA starts with an initial random population of M chromosomes, 

},,,,{ 00

3

0

2

0

1

0

MCCCCP  .  The superscript indicates the k
th

 iteration for the GA method.    

Starting with an initial population of solutions,
0P , which is randomly generated, the GA 

operations are applied to improve the population. For chromosome selection from 
kP , we 

employ a “roulette wheel” mechanism to probabilistically select a k

iC  based on some measure of 

its performance. A real-valued interval, Sum, is determined as the sum of fitness values of all 

individual chromosomes in the current population. Then each chromosome is mapped one-to-one 

into contiguous intervals in the range [0, Sum]. The length of each chromosome interval 

corresponds to the fitness value of the associated chromosome. In order to select a chromosome, 

a uniform random number is generated in the interval [0, Sum] and the k

iC  whose segment spans 

the random number is selected. This selection method gives larger weight to chromosomes 

whose fitness values are large relative to other chromosomes, so they have a higher probability 

of being chosen. This selection process is repeated until the desired number of individuals has 

been selected.  

Genetic operators manipulate the sig  of a chromosome directly, using the assumption 

that certain sig , on average, produce fitter individuals. The crossover operator is used to 

exchange certain sig  between individuals. There are different ways to perform the crossover 

operation. The simplest one is one-point crossover that randomly picks an i and switches the ig   

between a pair of chromosomes. Multi-point crossover picks m crossover points  m ,,1   
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randomly with no duplicates such that }1,.....,2,1{  li , where l is the length of the 

chromosome. The values at 
i

g   are exchanged between the two parents to produce two new 

offspring chromosomes. In our method, we use a single point crossover. As another natural 

evolution, mutation is a random process where a small subset of genes are replaced by another to 

produce a new genetic structure. In GA, mutation is randomly applied with low probability, 

typically in the range 0.001 and 0.01, and modifies elements in the chromosomes. 

The fitness function used in this study was Kubat‟s (1999) g-mean value for the original 

training set after training the SVM classifier with the instances specified in the chromosome for 

the majority class instances along with all of the minority class instances. The geometric mean 

(g-mean) was used as a fitness function in GA because it simultaneously considers the accuracy 

of the minority and majority classes. The fitness function, 0( ( ), )f svm IS T is defined as  

max 

 
where, 

=  original training set including all instances  

= instance set (all minor instances and selected majority instances by GA-based 

Instance Selection) 

= accuracy of the minority class in 0T after learning a new training set (IS) 

= accuracy of the majority class in 0T after learning a new training set (IS) 

 

A common practice is to terminate the GA operations after a predetermined number of 

generations. Here we set up a maximum number of generations to stop the GA. The procedure is 

described in Figure 4.1. 
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   Original training dataset 

   Binary chromosome representation of the majority instances 

Mk   Number of individual chromosomes in population k 

MAXGEN  Maximum number of generations 

 Instance set that is combined with minority instances and a subset 

of the majority instance that is represented by k

iC  

selection Selection method in selection operator in GA 

 

 

Initialize: k=0;  

                             
Generate an initial population, } 

while k < MAXGEN do 

 for 1i  to Mk  

 

 
    

 endfor 

   

 /* new chromosomes produced by GA operators*/ 

 
   

   

   

  

 k = k+1; 

 

endwhile 

 

return    /* select an instance set that maximizes the 

fitness function after terminating GA  

}  

 

Figure 4.1 GA-based Instance Selection from the majority instances 
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4.3 Experiments 

This section describes the empirical study of instance selection on SVMs using our GA 

method as compared to existing methods. For this experiment, we used five real datasets, 

abalone, blood transfusion, pima, wine, and yeast datasets from the UCI data mining repository 

(Table 4.1). The class imbalance problem was limited to a two class classification problem in 

each case. For those datasets having multiple classes, two overlapping classes were selected 

(Appendix A).  All steps of data pre-processing and model development were carried out in 

MATLAB R2008b and the algorithms were implemented using the SVM-KM toolbox (Canu et 

al., 2005). 

4.3.1 Experimental Design 

First, before using SVM, scaling of attribute values was necessary for the datasets to 

avoid attributes in greater numeric ranges from dominating those in smaller numeric ranges. All 

attributes were scaled within a range of [-1, 1]. Using a Gaussian radial-based kernel 

function, )2exp(),( 2
2

'' xxxxk  , we set parameters C and   such that the best 

performance was obtained for the overall classification accuracy for each dataset (see Appendix 

B).  This was done using five-fold cross validation through different combinations of C and , 

({1, 10, 100, 200, 500, 1000} {0.1, 0.2, 0.5, 1, 2, 3}). Each dataset was then divided into 2 sets: 

training set (80%) and test set (20%) according to the original class distribution (see Figure 4.2). 

After using our GA method to find the boundary with the training set, the boundary was 

evaluated using independent test datasets.  
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Table 4.1 Descriptions of experimental datasets 

Datasets Data description Number of Instances 
Number of 

Attributes 

Abalone 

Predicts the number of 

rings through a microscope 

for measuring the age of 

abalone. Originally, this 

dataset contained 4177 

instances and 29 predicted 

rings (abalone1~29). For 

our experiment, abalone 9 

and abalone 14 are used for 

classification  

(abalone9 vs abalone14).  

815 

(abalone9:126, 

abalone14:689 

7 numeric 

Blood 

transfusion 

Classifies whether a person 

donated blood  

(Donate vs Non-donate) 

748 

(Donate:178 

Non-datae:570) 

4 numeric 

Pima 

Predicts when a patient 

shows signs of diabetes 

according to World Health 

Organization criteria  

(Positive vs Negative) 

768 

(positive:268, 

negative:500) 

8 numeric 

Wine 

(red wine) 

Predicts wine quality (score 

between 0 and 10) based on 

physicochemical tests. For 

the two class problem, 

those with a score greater 

than 5 were rated High 

quality and less than 5 were 

rated Low quality. 

1599 

(High:217, Low:1382) 
11 numeric 

Yeast 

Predicts localization site of 

protein. Originally it is 

grouped with 10 classes. 

For this experiment, we  

take MIT (mitochondrial) 

as the minority class the 

rest of classes as the 

majority class for two class 

classification problem 

(MIT vs REST). 

1484 

(MIT:244, REST:1240) 
8 numeric 
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Figure 4.2 Class distributions of experimental datasets (abalone and yeast) 

 

Conducting SVM classification with a Gaussian radial based kernel function without 

selective sampling, we observed a typical class imbalance problem from those experimental 

datasets. This can be found that the g-mean values are consistently low, as seen in Table 4.2. 

Details on the classification results can be found in Appendix C.   

Table 4.2 G-mean values of the experimental datasets on SVM (training and test sets) 

Datasets 
g-mean 

Training Dataset Test Dataset 

abalone 0.65 0.48 

blood transfusion 0.49 0.44 

pima 0.71 0.67 

wine 0.84 0.68 

yeast 0.69 0.65 
 

 

4.3.2 Approaches for imbalanced data learning 

We evaluated our GA-based Instance Selection method by comparing its results with 

those obtained using SVM-SMOTE, SVM-RU, and Biased penalty methods. 

 

(a) abalone dataset (b) yeast dataset 
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Method 1. SVM-SMOTE 

For the SMOTE algorithm, K was set to 5 for the K-NN calculation.  The number of 

synthetic instances for the minority class was increased linearly.  Learning was performed using 

20 independent synthetically enhanced datasets and the maximum average g-mean was 

calculated to identify the best synthetic sample size. For example, if the maximum average g-

mean of the original training set appears when 200% of new synthetic instances are added into 

the training dataset, an increment of 200% is selected. While increasing minority instances 

gradually, we observed g-mean values of the original training sets for each experimental dataset. 

Figure 4.3 shows g-mean values of the training sets as instances are added by SMOTE. 

           

           

 

(a) abalone dataset (b) blood transfusion dataset 

(c) pima dataset (d) wine dataset 
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Figure 4.3 Average g-mean values of the training dataset in terms of increase of synthetic 

minority instances by SMOTE 

Based on the results, adding instances near the original minority instances causes SVM to 

incur more misclassification costs. In order to reduce misclassification cases, the hyperplane is 

shifted to the majority class side. This shift can be seen as the g-mean value changes. From 

SVM-SMOTE, the maximum g-means were found for increments of 600% for abalone, 200% 

for blood transfusion, 100% for pima, 400% for wine, and 500% for yeast . These are marked 

with a dash-square as shown in Figure 4.3.     

 

Method 2. SVM-RU 

We also conducted random under-sampling of the majority instances.  In the same way as 

SVM-SMOTE, learning with under-sampled training sets was repeated 20 times for each size of 

the reduced training set. Then we chose the reduced training set that produced the maximum g-

mean value for the original training set. Consequently, as we anticipated, the randomness of 

under-sampling did not produce a consistent result as compared with SMOTE.  

 

(e) yeast dataset 
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Method 3. Biased Penalty method (Distinct C parameters) 

One way to alleviate imbalanced data learning is to assign a smaller misclassification cost 

to the majority class while assign a larger cost to the minority class (Veropoulos et al., 1999).  

Supposing that m1 and m2 denote the size of class1 (minority) and class2 (majority) 

respectively, we want to 

 

minimize 
1 22

1 21 1
/ 2

m m

i ji j
w C C 

 
                                  (4.1) 

where C1 and C2 are defined respectively as  

2
1

1 2

1
2

1 2

,

.

m
C C

m m

m
C C

m m

 


 


                                                (4.2) 

Assigning distinct misclassification penalties emphasizes the minority instances rather than the 

majority instances. Adjusting different penalties for misclassified instances according to class 

distribution was not considered in this comparison. 

 

Method 4. GA-based Instance Selection 

As described earlier in this chapter, we used the GA-based Instance Selection (GA-IS) for 

the majority class. Similar to SVM-SMOTE, this method was repeated 20 times. The settings for 

the GA method included a fixed population size of 40 and an upper limit of 200 generations for 

termination. 
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4.4 Experimental Results and Discussion 

The average g-mean values for the original training set using the four different methods 

are shown in Table4.3. From Analyis of Variance (ANOVA), differences were observed for the 

methods (see Appendix D). Comparison of mean differences for all pairs of methods showed that 

SVM-SMOTE and GA-IS slightly outperformed SVM-RU and the biased Penalty methods. In 

the case of the wine dataset, SVM-SMOTE and GA-IS did not show a significant mean 

difference.  

Table 4.3 Average G-mean of Training sets obtained from 4 different methods   

 G-mean of Training set 

 SVM 

with the original training set SVM-SMOTE SVM-RU Biased Penalty C GA-IS 

abalone 0.6471 0.8390 0.8129 0.8185 0.8173 
blood 0.4929 0.6973 0.6899 0.6900 0.7072 
pima 0.7115 0.7717 0.7662 0.7454 0.7914 
wine 0.8377 0.9285 0.8827 0.8942 0.9257 
yeast 0.6929 0.8251 0.8055 0.8015 0.8089 

 

In summary, the two rebalancing approaches, particularly SVM-SMOTE, are effective 

methods to move a decision boundary for highly overlapped cases as illustrated in the 

experimental datasets. However, since optimal value for smoteR  (the number of synthetic 

instances) is unknown, it should be determined using a grid search, which means gradually 

increasing or decreasing the training set size to find an optimal rebalanced training dataset. 

While SMOTE produced good results, the increase in instances can cause a large increase in the 

computation time for a SVM learning process and at the same time require a large amount of 

memory capacity. GA-IS provides equivalent accuracy performance with a significant reduction 

in learning time and demands for memory.  
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In reducing the training dataset size and avoiding a grid search for determining an 

optimal class distribution, GA-IS performs well. However, when the number of the majority 

instances is large, it requires additional time for the selection process. Therefore, we need to 

modify the method to reduce the instance set and produce much smaller training datasets, This is 

addressed in the next chapter. 
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CHAPTER 5 SMALLER LEARNING SETS for IMBALANCED DATA 

LEARNING with SVMs 

 

This chapter introduces a new methodology that produces a smaller training set for 

imbalanced data learning with a SVM. Since the size of training set on SVM is a critical issue, 

previous research has focused on finding representative training sets for SVM classification.  In 

this chapter, we describe a new methodology to solve the class imbalance problem with SVMs 

by producing small training sets that have good performance in terms of efficiency and 

effectiveness.  

5.1 A new method to reduce learning time  

The time complexity of a SVM is considered to be 
2( )O M  where M is the number of 

training instances (Shin and Cho, 2003). Effective heuristic methods used to reduce SVM 

learning time divide the original quadratic program into a series of small problems (Platt, 1999). 

Using decomposition methods, time complexity of 
3( )I O Mq q   can be achieved where I is the 

number of iterations and q is the number of working sets, but the dilemma is that I is 

proportional to M. Even with these methods, large learning times are typical for large datasets.  

Therefore, many studies have tried to reduce training samples for fast learning on SVM as 

explained in Chapter 4. These approaches try to detect instances that could be defined as SVs in 

SVM classification, focusing primarily on instances close to the overlapping region of the 

classes. Imbalance data learning introduces the additional problem of finding a hyperplane that 

results in high G-mean values. 

We propose a new approach at the data level for the class imbalance problem to 

significantly reduce the size of the training dataset. This approach is based on the premise that 
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redundant instances do not harm correct classifications while they increase classification costs 

(i.e., computation time or memory usage). Without considering redundant instances, we select 

influential instances (i.e., instances having major influence on the boundary) that affect the 

classification accuracies of two classes.  

In sampling instances, particularly for imbalanced data learning, it is difficult to detect 

influential instances that possibly influence the determination of decision boundaries because of 

the mapping of instances from input space to a high-dimensional space through kernel functions. 

Although we may observe some instances around or in an overlapping region in the input space 

(real space), the instance locations are unknown in the high-dimensional space (kernel or feature 

space). Considering the nature of the SVM algorithm in defining a decision boundary, we focus 

our attention on SVs to effectively move the decision boundary. SVs lie closest to a hyperplane 

and determine an optimal separation between two classes in kernel space, while non-support 

vectors do not affect the decision boundary.    

Our expectation is that if we can define a hyperplane with relatively few instances from 

the training set, then we can avoid the high learning time cost and the usual empirical studies 

used to rebalance datasets while ensuring balanced accuracies for the minority and majority 

classes. Our approach consists of two stages namely, (1) Rough elimination of instances that are 

SVs for the majority class in kernel space, and (2) Selection of majority instances which are SVs 

that maximize the accuracy of classification using a Metaheuristic Algorithm. In the first stage, 

we collect SVs from iterative removal of instances from the majority class that are SVs. This 

procedure attempts to under-sample the majority SVs, moving the decision boundary toward the 

majority class. Furthermore, it narrows the space for instance selection in the second stage. In the 

second stage, instance selection is performed on the set of SVs for the majority class subsets 
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using a Genetic Algorithm. The goal in this stage is to find instances that improve overall 

accuracy of both classes. 

 

5.1.1 Stage1. Rough elimination of support vectors of the majority class in kernel space 

 

The primary question of which instances and how many instances should be eliminated in 

terms of an under-sampling approach is addressed at this stage. To select instances of the 

majority class for removal, a SVM learner is used for classification and its corresponding SVs 

are found. Given that SVs are located closest to a decision boundary, removing SVs from the 

majority class should be more effective in moving the boundary towards the majority class than 

under-sampling of instances farther from the boundary. By iteratively classifying and removing 

SVs, the boundary will gradually shift towards the majority class.  

Stage 1 is a preprocessing step for Stage 2 in that the resultant set of SVs are used in 

Stage 2 to achieve near optimal instance selection. Instead of searching the whole training 

dataset to select instances that maximize the G-mean of the original training set, we produce a 

significantly smaller subset of the training set to start instance selection. This improves the 

performance of instance selection and reduces processing costs in Stage 2.  

In general, rebalancing learning sets means over-sampling minority instances, under-

sampling majority instances with the whole initial learning sets. Knowing that a SVM learner 

defines an optimal hyperplane with only SVs, we would avoid over-sampling or under-sampling 

the whole learning sets, instead, approach to a certain subset that possibly contains learning set 

for imbalanced data learning, then find an optimal learning set from it.  

In experiments with real datasets, results of initial studies on the datasets showed that the 

G-mean value as a function of iteration number in Stage 1 was well behaved. The value 
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increased to a maximum and then decreased, which is found that too much elimination of them 

does not result in a good decision boundary for imbalanced data sets with a SVM, since Stage 1 

conducts the elimination of SVs of the majority instances. Therefore, in order to avoid searching 

for learning sets at Stage 2, the top three performing subsets of SVs were selected for Stage 2. 

Figure 5.1 summarizes the procedure for Stage1. 

 

 

Notation for Stage 1 

 

   set of all instances in the original training set. 

   set of instances used for training at i
th 

iteration such that  

  SVM trained with  

 set of positive (minority) class instances that are SVs in the at i
th 

iteration 

   set of negative (majority) class instances that are SVs in the i
th 

iteration 

   subset of SVs for the i
th 

iteration, 
 

            G-mean for using iSV  

   set of iSV  producing the highest G-mean values for 0T  
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find  ( 0T ) { 

Initialize: 

 0i  

  

While not Stop 

1 ii  
If  then 

         /* remove 


iSV  from 1iT .*/ 

end if 

 

         /* collect SVs from iT  */ 

                         /* G-mean of 0T  based on classification with iT  */ 

 
 

If   then 

  Add  to  

else 

If  then 

   Replace with  

  else 

    

  end if 

end if 

 

end while 
 

return  

} 

 

Figure 5.1 Stage 1 Algorithm  

 

5.1.2 Stage2. Selection of majority instance support vectors 
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In Stage 2, we want to select majority instances from the reduced instance training set 

found in Stage 1 that produce a near optimal classification result. Given a    from Stage 

1 where , calculating the inner product of instances according to a kernel 

function in a SVM results in a N N kernel matrix. When we sample a small subset of instances 

from , we obtain a different and smaller kernel matrix which may cause an unexpected shift 

as shown in Figure 5.2.  

This example illustrates the sensitivity of the decision boundary to one SV instance when 

it is removed from a set of SVs collected in Stage 1. On the left of Figure 5.2 are the decision 

boundaries defined by the entire set of SVs. On the right side are the new boundaries after 

arbitrarily removing one instance of a majority support vector (the square in (a) indicates the 

instance removed). 
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Figure 5.2 Boundary sensitivity to removing one SV instance 

 

(a) decision boundary with all support 

vectors 
(b) decision boundary after removing one 

majority support vector instance 
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Since this set is relatively small, removing an instance causes a large boundary shift. In 

the case of a relatively small SV instance set of size n, we could enumerate all possible decision 

boundaries ( 2 1n  ) and choose the best one. However, when dealing with large datasets, this is 

not practical. Instead of enumeration, a metaheuristic instance sampling approach is proposed. 

We use a GA-based SV selection (GA-SS) in Stage 2. GA-SS uses the same fitness function 

described in Chapter 4 that was used in the GA-IS method.   

 The criterion for removing instances from each  is the effect on the G-mean for 

the original training dataset, . Using GA-SS, we want to find  such that  

  

 

The GA-SS algorithm is described in Figure 5.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

56 

 

 

 

 

 

 

 

 

 

GASS(  ){ 

 

   The entire training set 

   Candidate SV set from  produced in Stage 1 

  Set of positive (minority) SVs in  

   Set of negative (majority) SVs in  

   Binary chromosome representation of 


iSV in population k 
 

   Number of individual chromosomes in population k 

MAXGEN  Maximum number of generations 

 Instance set that is combined with  and a set of  

represented by  

   Fitness function, G-mean of  

selection Selection method in selection operator in GA 

 

 

Initialize: k=0;  

       Generate an initial population, 
 

  

 

while k < MAXGEN  

 for 1i  to   

   
 
 

 endfor 

   

 /* new chromosomes produced by GA operators*/ 

 

 

 

 
 k = k+1; 

 

endwhile 
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return    /* select an instance set of support  

vectors that maximize the fitness 

function at the final generation*/ 

} 

 

Figure 5.3 GA-SS Algorithm 

Given a decision boundary (‘Boundary1’) by SVs at Stage 1 after eliminating SVs of the 

majority instances, as seen in Figure 5.4(a), then in Stage 2, we select only majority SVs  based 

on GA-based selection method for a better  boundary („Boundary2‟) as seen in (b). 

 The overall procedure for Stages 1 and 2 is described in Figure 5.5. 

  
   

 

Figure 5.4 Boundary movement through selecting instances in Stage2

Boundary1 

Boundary2 

Boundary1 

(a) Boundary in Stage1 (b). Boundary determined in Stage 2 
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: SVs of the positive (minority) class    : SVs of the negative (majority) class. : Original training set 

 :fitness function (G-mean of the original training set, )  

: Final Instance set that maximizes the G-mean value of the original training set ( ) through GA-based instance selection
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Test set 
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GA operations 

 Selection 

 Cross-over 

 Mutation 

Keep 

„Iteration1‟ 

„IterationN‟ 

i, j, k are candidate 

sets of SVs for 

instance selection 

No 

Yes 

Max. 

Generate 

 

„Iteration2‟ 

„Iteration3‟ 

 

 

 

[Stage 1] [Stage 2] 

Evaluation 

Figure 5.5 Overall procedure of our approach for imbalanced training datasets 
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5.2 Demonstration of GA-SS 

 

In general, classification performance varies according to which kernel function is used 

within the SVM. In our research, a Gaussian radial-based function was used due to its 

outstanding classification performance in most applications. However, in order to demonstrate 

boundary shifting in our methodology, we also make use of a linear kernel function in this 

section.  Here, the proposed method is demonstrated using a simple artificial binary-class 

problem that has been used in previous chapters.  

5.2.1 Linear kernel function case 

Figure 5.6 shows the boundary shifting from iterations 1 to 4 in Stage 1. SVs from the 

majority class (•) are iteratively removed after classification with the linear kernel function 

shifting the boundary for the next iteration toward the majority class. 
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 (a) Iteration 1 (b) Iteration 2 
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Figure 5.6 Decision boundaries at each iteration through selecting instances from SVs of the 

majority class (linear kernel function) 

 

The boundary shift by eliminating SVs of the majority class affects the G-mean for the 

original training dataset. Figure 5.7 presents the boundary shift through two sequential 

iteratrions.   
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Figure 5.7 Mapping decision boundaries at Iteration 1 and 2 on the original training set 

(Linear kernel function case) 

 

(c) Iteration 3 (d) Iteration 4 

(a). Iteration 1 (b). Iteration 2 



www.manaraa.com

61 

 

The shift in the decision boundary increased the G-mean value for the original training 

set from 0.7836 to 0.8798 by achieving greater classification accuracy for the minority class.  

For Stage2 the population size was set to 40 individual chromosomes and 50 generations 

was the stopping point for the Genetic Algorithm. Figure 5.8 below shows a new decision 

boundary that are defined by learning the selected data sets and maxmize the G-mean values of 

the original imbalanced data set after completing Stage 2 with 4 candidate subsets. Three linear 

lines in Figure 5.8 represents the decision boundaries that are determined by the original skewed 

dataset, a reduced dataset from Stage1, and selected learning dataset (marked with circle) 

through Stage2 respectively.                   
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Figure 5.8 A decision boundary that produces the maximum G-mean for the original training set  

using GA-SS  

(Linear kernel function) 

 

Based on our proposed methodology, a good decision boundary was generated seen in the 

change in the G-mean value from 0.7836 to 0.8811 (about a 13 % improvement). Furthermore, 

Original Stage 1 Stage 2 
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this boundary was obtained with a relatively small training set, 29 instances (15 minority 

instances and 14 majority instances). 

5.2.2 Gaussian radial-based kernel function case 

 

Due to consistently good performance of the radial-based kernel function in most 

applications, a Gaussian radial-based kernel was used in our research. To demonstrate the effects 

of  a Gaussian radial-based kernel function (C=100, 1  ) on the boundary shift, we  performed 

4 iterations in Stage 1.  

As seen in Figure 5.9, the elimination of SVs of the major class made the classification 

boundary gradually shift towards the majority class.  

x1

x
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x1

x
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 
 

(a) Iteration 1 (b) Iteration 2 
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Figure 5.9 Decision boundaries for Stage 1 iterations  

(Gaussian Radial-based kernel function) 

 

 

Figure 5.10 shows the mapping of decision boundaries for iterations 2 and 3 on the 

original training set. The results indicate that removing SVs of the majority class shifted the 

decision boundary and increased the G-mean value for the original training set. 
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Figure 5.10 Mapping decision boundaries for Iterations 2 and 3 on the original training dataset 

(Gaussian Radial-based kernel function) 

 

After GA-IS in Stage 2, a good set of instances were found in . The resulting decision 

boundary is displayed in Figure 5.11. The G-mean value has improved from 0.7876 to 

(c) Iteration 3 (d) Iteration 4 

(a) Iteration 2 (b) Iteration 3 
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0.8923with 32 instances (minority: 16 and majority 16). The three curves in Figure 5.11 show 

the decision boundaries for the original skewed dataset, a reduced dataset from Stage 1, and 

selected learning dataset (marked with circles) from Stage 2. 
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Figure 5.11  Decision boundary that produces the maximum G-mean of the original training set through 

GA-SS  

(Gaussian Radial based kernel function) 

 

Through the experiments with a simple artificial dataset applying both linear and a 

Gaussian radial-based kernel function to the SVM classifier, we can observe the effects of GA-

SS on the boundary and significant increases in the G-mean value for the original training set. 

 

5.3 Experiments with real datasets 

 

Using the datasets discussed in 4.3.1, Stage 1 of the method was performed for 10 

iterations on each of the datasets.  Figure 5.12 presents trends for the G-mean of the original 

training set after Stage 1 was completed.   

Original Stage 1 Stage 2 
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Figure 5.12 Trend of G-mean values of the original training set on reduction of the majority instances in 

Stage1 

(c) pima training dataset 

 

(d) wine training dataset 

 

(e) yeast training dataset 

 

(a) abalone training dataset 

 

(b) blood training dataset 
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As seen in Figure 5.12, removing SVs increases G-mean values up to a point at which the 

trend reverses because too many instances have been removed for the majority class. For Stage 1 

we found that the maximum G-mean values were obtained at iteration 3 for abalone, iteration 2 

for blood transfusion, iteration 2 for pima, iteration 2 for wine, and iteration 3 for yeast dataset. 

The dashed oval is used to indicate the sets of SVs producing the 3 highest G-mean values.  

Since we do not guarantee that the set of SVs that showed the highest G-mean in Stage 1 will 

produce a training set with the highest G-mean in Stage 2, all three sets of SVs are processed 

separately in Stage 2.  

Given the nature of GA-based instance selection, GA-SS was conducted 20 times for 

each . Figure 5.13 below displays box plots of the G-mean of the training set of 20 runs 

corresponding to the datasets from iterations in Stage1.  

 
 
 
 
 

(a) abalone dataset 

 

(b) blood transfusion dataset 
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Figure 5.13 Box plots of G-mean of the training set after Stage 2 for   
 (A, B and C represents groups associated with comparision of mean difference in a pair.) 

 

Results of one-way ANOVA indicated significant differences in G-mean values (see 

Appendix E). After ANOVA, we also observed which iterations are different from each other 

using pairwise comparison with a post-hoc test (Tukey HSD). Significant differences were found 

and are represented by Groups A, B and C in Figure 5.13. In the case of abalone dataset, 

Iteration 2 and Iteration 3 did not show significant mean difference each other (Group A), but 

since one of our objectives is to have a smaller training set for classification, we prefer to take 

the instance set (97 instances) obtained from iteration 3 rather than iteration 2 (137 instances).  
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Table 5.1 shows the improvement of G-mean values and the size of the training set from 

Stage 1 to Stage 2. For example, in the wine dataset, the G-mean increased by about 5% 

(0.89250.9349) after Stage 2, while the size of the training set was reduced by 84% 

(1054164). 

Table 5.1 Improvement of G-mean and training set reduction after Stage2 

% in Stage2 indicates a percentage of data reduction based on size of training set in Stage 1  

5.4 Summary and Discussions 

In this chapter, we have introduced a new metaheuristic approach to imbalanced data 

learning with SVMs. The basis of this approach is to iteratively remove majority instances from 

the original traning set and then select SVs from the remaining majority instances that maximize 

the G-mean value using a Genetic Algorithm. In that SVs are a smaller subset of the learning set 

which is located outside of classes, this set of SVs does not follow the original data distribution 

of the class. Thus, arbitrarily removing even one of SVs could result in a totally different 

decision compared with a previous one, as seen in Figure 5.2. At this point, instanc selection 

based on Genetic Algorithm in Stage2 could find an optimal training set for imbalanced data 

learning, further determined a relatively small training set for SVM classifier. 

 G-mean of the original training set Size of training set 

 Stage1 Stage2 

(average) 

Stage1 Stage2 

 

abalone 0.8237 0.8442 502  84  (83%) 

blood   0.6917 0.7111 387 137 (65%) 

pima 0.7284 0.7957 457 120 (74%) 

wine 0.8925 0.9349 1054 164 (84%) 

yeast 0.8093 0.8278 911 145 (84%) 
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A comparison of the performances of all 5 different approaches based on the G-mean of 

the original training set showed that GA-SS had the best performance in the 5 experimental 

datasets (see Figure 5.14).  

 

 

 

 

 

0.8377 

0.9285 

0.8827 

0.9257 0.9349 

0.78 
0.8 

0.82 
0.84 
0.86 
0.88 

0.9 
0.92 
0.94 
0.96 

SVM - ORI SVM - SMOTE SVM - RU GA - IS GA - SS 

0.7115 

0.7717 
0.7662 

0.7914 0.7957 

0.66 

0.68 
0.7 

0.72 
0.74 

0.76 
0.78 

0.8 
0.82 

SVM - ORI SVM - SMOTE SVM - RU GA - IS GA - SS 

0.4929 

0.6973 0.6899 
0.7072 0.7111 

0.45 

0.5 

0.55 

0.6 

0.65 

0.7 

0.75 

SVM - ORI SVM - SMOTE SVM - RU GA - IS GA - SS 

* * 

0.6471 

0.839 
0.8129 0.8173 

0.8442 

0.6 

0.65 

0.7 

0.75 

0.8 

0.85 

0.9 

SVM - ORI SVM - SMOTE SVM - RU GA - IS GA - SS 

* * 

(b) blood transfusion dataset 

(c) pima dataset (d) wine dataset 

(G-mean) (G-mean) 

(G-mean) (G-mean) 

(a) abalone dataset 



www.manaraa.com

70 

 

 

SVM-ORI means learning on SVM with the original training set 

Figure 5.14 Comparison of G-mean values for the training sets (average) for 5 different methods 

 

Analysis of the results showed that differences between GA-SS and other methods were 

not statistically significant in some cases.  This included  SVM-SMOTE for the abalone and 

yeast datasets and GA-IS in the blood transfusion dataset. In other words, the GA-SS approach 

performance was comparable in these cases (which are marked with a * in Figure 5.14). 

GA-SS approach produces smaller training sets as compared with SVM-SMOTE and 

GA-IS. Figure 5.15 shows the sizes of the training sets for SVM-SMOTE, GA-IS and GA-SS 

which had high classification accuracy. As expected, smaller sets use less memory and have 

shorter learning times, which can be seen in the results of measuring the learning time of training 

sets (see Figure 5.16).  
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Figure 5.15 Size of training sets  

 

 

 

       

 

Figure 5.16 Comparison of learning time  
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Comparing learning time for SVM-SMOTE and GA-SS, it was observed that GA-SS 

showed outstanding performance. For example, for the yeast dataset, GA-SS (0.06 seconds) is 

about 207 times faster than that from SVM-SMOTE (13.36 seconds).  

In order to evaluate decision boundaries after training, we determined the G-mean values 

after classification of independent test datasets which were separated from the each  UCI dataset 

according to its original class distribution as depicted in Figure 4.5 in Chapter 4. Table 5.2 shows 

the average G-mean values of 20 runs.  

Table 5.2 Average G-mean of Test sets in terms of 5 different methods in 20 runs 

 G-mean of Test set 

 
SVM with test 

sets 
SVM-SMOTE SVM-RU 

Biased Penalty 
C 

GA-IS GA-SS 

abalone 0.4791 0.7824 0.7882 0.7644 0.7127 0.8296 

blood 0.4433 0.6819 0.6771 0.6791 0.6685 0.7150 

pima 0.6733 0.7663 0.7583 0.7542 0.757 0.7524 

wine 0.6784 0.8061 0.8144 0.8185 0.7683 0.8447 

yeast 0.6467 0.7982 0.794 0.8022 0.739 0.8112 

 

We found that the decision boudnaries made by GA-SS approach had the highest 

accuracy in 4 of 5 test datasets. In addition, GA-SS produces much smaller training sets as 

compared with the SMOTE sampling approach. 
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CHAPTER 6 CONCLUSIONS 

 

Supervised learning of imbalanced datasets continues to be an important research issue in 

the data mining and machine learning communities. A direct method to solve the imbalance 

problem is artificially balancing the class distributions. In this dissertation, a new methodology 

has been proposed for imbalanced data learning that simultaneously considers the aspects of 

effectiveness and efficiency for a SVM classifier. The research problems considered in this 

dissertation are (1) the existing rebalancing approaches require an empirical process to find an 

optimal class distribution by grid search and (2) in spite of its good performance, the over-

sampling algorithm, SMOTE has computational difficulties when used with a SVM classifier. 

The major contributions of this dissertation include the following items. 

1. Metaheuristic under-sampling  

Random under-sampling is a common under-sampling approach for rebalancing the 

dataset to obtain a better class distribution. Although random under-sampling of the majority 

data pushes the learned boundary toward the majority class, this may not bring a stable class 

distribution for imbalanced data learning due to its randomness. On the other hand, over-

sampling approach based on SMOTE algorithm gives us a promising class distribution for 

imbalanced data learning on SVM. However, increasing the minority instances makes training 

sets significantly larger, which increases the classifier‟s computational load for optimization 

within the SVM classification algorithm. Consequently, use of these two rebalancing approaches 

can be problematic. These aspects motivated us to develop an alternative method that does not 

require the empirical steps of looking for an optimal class ratio in finding reduced training sets. 
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First assuming that all minority instances are informative, Genetic Algorithm based under-

sampling of the majority instances is applied through formulating an optimization problem. 

Instead of grid search for finding a desired class ratio for imbalanced data learning, the Genetic 

Algorithm approach determined a near optimal training set for the SVM classifier. 

2. Informative and representative near optimal training sets 

 

As mentioned earlier this chapter, in terms of effectiveness and efficiency in dealing with 

imbalanced datasets using a SVM classifier, we need to find training sets to solve this problem as 

well as take weakness of the learning algorithm, large-scale problem with a SVM, into 

consideration in determining training sets. The two hypotheses presented in Chapter 3 are the 

basic premises that are the foundation of the GA-SS method. 

Hypothesis 1: A relatively small number of instances from an imbalanced training set are 

needed to obtain good performance in solving the class imbalance 

problem using a SVM. 

 

Hypothesis 2: A smaller subset within the set of SVs can be found that produces a 

better boundary using a SVM.  

 

Even though GA-IS can be used as an alternative approach for imbalanced data learning 

without rebalancing the class distribution by grid search, search time increases exponentially 

with the number of majority instances in order to reach at an optimal class distribution. To 

address this problem, we proposed a two stage methodology, GA-SS, which had good 

performance and resulted in a much smaller training set. This approach will be quite useful when 

the number of the majority instances is large. The idea is based on the well-known fact about 

SVMs that only SVs are necessary and other redundant samples (non-SVs) can be removed 
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without affecting classification. This fact allows us to explore the possibility of selecting small 

training sets from instances that have been named sets of SVs through learning gradually reduced 

training sets. Investigating GA-IS from the majority instances, this tends to search and select 

them as learning instances even though most of them do not affect classification results. In other 

words, since binary chromosomes contained all majority instances as possible solutions, after 

terminating GA, only those genes that are SVs affected the decision boundary. As a result, 

searching the whole space of the majority class in Genetic Algorithm will require a longer time 

to find an optimal training set. As compared with SMOTE algorithm by grid search in Chapter 4 

(Table4.2), GA-IS had good performance in 3 (blood transfusion, pima, and wine) of the 5 UCI 

experimental datasets, while performances by SMOTE algorithm approach were better in 2 

datasets (abalone and yeast).   

To make the training set as small as possible for a SVM, we proposed a new method that 

selects only influential instances that affect decision boundaries. The motivation of this approach 

is that by making the search space smaller for selecting instances, we expect to find a better near 

optimal training set and at the same time, have a much smaller training set. This was achieved by 

iteratively using the SVM classifier to obtain good candidate subsets (sets of SVs) which were 

then removed.  Given that the initial imbalanced class distribution causes an imbalanced ratio of 

SVs, we suppose that all SVs of the minority class are informative as assumed in GA-IS method. 

Instead we select and remove instances from SVs in the majority class.  

Since we collect just a small portion of instances which are SVs from the training sets, 

eliminating even an instance from a SV set could cause a major shift in the decision boundary. 

This is another reason why a metaheuristic approach was used to find near optimal training sets 

instead of enumerating all possible decision boundaries. Compared with 2 sampling approaches 
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(SMOTE and random under-sampling) and GA-IS, GA-SS showed overall better performances 

(G-mean of the training sets and test sets) in all experimental datasets. In addition, GA-SS 

produced relatively small optimal training sets.  

Although our methodology produces smaller training sets, the final training sets through 

Genetic Algorithm based instance selection still contain dummy instances which are non-support 

vectors. Future research should consider how to find better training sets by detecting dummy 

instances. Some combinations of heuristic and non-heuristic instance selection approaches 

should be studied for SVM classifiers. The G-mean metric was used in the fitness function of the 

Genetic Algorithm and as a measure of inductive bias for imbalanced data learning in this 

dissertation. Given that class labels for learning data are classified by a hyperplane between two 

different classes and predicted values of data represent distance from an optimal hyperplane, 

future work should consider using the distance and predicted class label as part of a more robust 

fitness function in GA-based.   
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APPENDIX A. EXPERIMENTAL IMBALANCED TRAINING SETS 

1. abalone dataset 
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APPENDIX A. EXPERIMENTAL IMBALANCED TRAINING SETS 

(CONTINUED) 

2. blood transfusion dataset 
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APPENDIX A. EXPERIMENTAL IMBALANCED TRAINING SETS 

(CONTINUED) 

3. Pima dataset 
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APPENDIX A. EXPERIMENTAL IMBALANCED TRAINING SETS 

(CONTINUED) 

4. wine dataset  
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APPENDIX A. EXPERIMENTAL IMBALANCED TRAINING SETS 

(CONTINUED) 

5. yeast dataset 
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APPENDIX B. PARAMETER C AND  SETTING THROUGH 5-FOLD 

CROSS VALIDATION 

 

1. abalone dataset  

 

C 
  

0.1 0.2 0.5 1 2 3 

1 0.8503 0.8552 0.8626 0.8515 0.8454 0.8454 

10 0.8246 0.8540 0.8663 0.8687 0.8638 0.8528 

100 0.8172 0.8209 0.8589 0.8798 0.8699 0.8748 

200 0.8172 0.8099 0.8577 0.8748 0.8736 0.8736 

500 0.8172 0.8111 0.8528 0.8724 0.8773 0.8712 

1000 0.8172 0.8135 0.8454 0.8651 0.8761 0.8748 

 

 

2. blood transfusion dataset  

C 
  

0.1 0.2 0.5 1 2 3 

1 0.7754 0.7901 0.7687 0.7674 0.7620 0.7620 

10 0.7272 0.7754 0.7874 0.7687 0.7647 0.7661 

100 0.6992 0.7380 0.7928 0.7781 0.7741 0.7674 

200 0.6992 0.7259 0.7941 0.7861 0.7701 0.7701 

500 0.7072 0.7286 0.7888 0.7874 0.7701 0.7741 

1000 0.7059 0.7152 0.7821 0.7848 0.7714 0.7727 

 

 

3. pima dataset 

C 
  

0.1 0.2 0.5 1 2 3 

1 0.6497 0.6796 0.7668 0.7734 0.7682 0.7669 

10 0.6497 0.6771 0.7330 0.7512 0.7760 0.7669 

100 0.6497 0.6771 0.7044 0.7447 0.7538 0.7695 

200 0.6497 0.6771 0.7044 0.7382 0.7486 0.7617 

500 0.6497 0.6771 0.7017 0.7278 0.7474 0.7525 

1000 0.6497 0.6771 0.7017 0.7161 0.7382 0.7591 

 

 

 

 

 

(Classification accuracy) 

(Classification accuracy) 

(Classification accuracy) 
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APPENDIX B. PARAMETER C AND  SETTING THROUGH 5-FOLD  

CLOSS VALIDATION (CONTINUED) 

 

 

4. wine dataset 

C 
  

0.1 0.2 0.5 1 2 3 

1 0.8718 0.8993 0.8855 0.8999 0.8643 0.8643 

10 0.8780 0.9006 0.8899 0.9031 0.8724 0.8637 

100 0.8849 0.8999 0.8887 0.9031 0.8812 0.8818 

200 0.8868 0.8999 0.8856 0.9031 0.8793 0.8812 

500 0.8824 0.8999 0.8874 0.9031 0.8768 0.8812 

1000 0.8780 0.8999 0.8862 0.9031 0.8799 0.8830 

 

5. yeast dataset 

C 
  

0.1 0.2 0.5 1 2 3 

1 0.8726 0.8868 0.8881 0.8821 0.8390 0.8356 

10 0.8538 0.8720 0.8895 0.8828 0.8841 0.8780 

100 0.8491 0.8437 0.8861 0.8908 0.8787 0.8841 

200 0.8497 0.8416 0.8780 0.8895 0.8807 0.8801 

500 0.8497 0.8234 0.8679 0.8868 0.8814 0.8767 

1000 0.8497 0.8268 0.8605 0.8888 0.8794 0.8814 

 

 

 

 

 

 

 

 

 

 

(Classification accuracy) 

(Classification accuracy) 
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APPENDIX C. INITIAL CLASSIFICATION RESULTS on SVM LEARNING WITH 

THE ORIGINAL TRAINING AND TEST DATASETS 

 

 

1. abalone dataset  

 

Training   Predicted   Test   Predicted 

  abalone9 abalone14    abalone9 abalone14 

Actual 
abalone9 43 58  

Actual 
abalone9 6 19 

abalone14 9 542   abalone14 6 132 

 overall accuracy=585/652=0.8972   overall accuracy=138/163=0.8466 

 accuracy of abalone9=43/101=0.4257  accuracy of abalone9=6/25=0.2400 

 accuracy of abalone14=542/551=0.9837  accuracy of abalone14=132/138=0.9565 

  g-mean=0.6471       g-mean=0.4791   

 
 

2. blood transfusion dataset 
 

Training   Predicted   Test   Predicted 

  Donate Non-donate    Donate Non-donate 

Actual 
Donate 36 107  

Actual 
Donate 7 28 

Non-donate 16 440   Non-donate     2       112 

 overall accuracy=476/599=0.7947  overall accuracy=119/149=0.7987 

 accuracy of Donate=36/143=0.2517   accuracy of Donate=7/35=0.2000 

 accuracy of Non-donate=440/456=0.9649  accuracy of Non-donate=112/114=0.9825 

  g-mean=0.4929       g-mean=0.4433   

 
 

3. blood transfusion dataset 
 

Training   Predicted   Test   Predicted 

  positive negative    positive negative 

Actual 
positive 118 97  

Actual 
positive 27 26 

negative 31 369   negative     11       87 

 overall accuracy=487/615=0.7919  overall accuracy=116/153=0.7582 

 accuracy of Positive=118/215=0.5488   accuracy of positive=27/53=0.5094 

 accuracy of Negative=369/400=0.9225  accuracy of negative=89/100=0.8900 

  g-mean=0.7115       g-mean=0.6733   
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APPENDIX C. INITIAL CLASSIFICATION RESULTS on SVM LEARNING WITH 

THE ORIGINAL TRAINING AND TEST DATASETS 

(CONTINUED) 

 

4. wine dataset 
 

Training   Predicted   Test   Predicted 

  High Low    High Low 

Actual 
High 124 50  

Actual 
High 21 22 

        Low 17 1088        Low     16       261 

 overall accuracy=1212/1279=0.9476  overall accuracy=282/320=0.8813 

 accuracy of High=124/174=0.7126   accuracy of High=21/43=0.4884 

 accuracy of Low=1088/1105=0.9846  accuracy of Low=262/277=0.9422 

  g-mean=0.8377       g-mean=0.6784   

 
 

5. yeast dataset 
 

Training   Predicted   Test   Predicted 

  MIT REST    MIT REST 

Actual 
MIT 36 107  

Actual 
MIT 21 28 

REST 16 440   REST     6       242 

 overall accuracy=1063/1187=0.8955  overall accuracy=263/297=0.8855 

 accuracy of MIT=96/195=0.4923   accuracy of MIT=21/49=0.4286 

 accuracy of REST=967/992=0.9748  accuracy of REST=242/248=0.9758 

  g-mean=0.6927       g-mean=0.6467   
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APPENDIX D. MEAN DIFFERENCE BEWTEEN g-mean OF the training set IN TERMS 

OF THREE APPROACHES (SVM-SMOTE, SVM-RU and GA-IS) 

1. abalone dataset 

ANOVA table                                                                                                                                                     (α=0.05)                    

Source DF Sum of Squares Mean Square F ratio p-value 

methods 2 0.0078 0.0039 69.8840 < .0001* 

Error 57 0.0032 0.0001 
  C. Total 59 0.0110   
   

Comparison of mean difference of the g-mean (Tukey’s HSD Post-hoc test) 

Level -Level Difference Std. Err. Diff. Lower CL Upper CL p-value 

SVM-SMOTE SVM-RU 0.0261 0.0024 0.0204 0.0318 < .0001* 

SVM-SMOTE GA-IS 0.0218 0.0024 0.0161 0.0275 < .0001* 

GA-IS SVM-RU 0.0044 0.0024 -0.0013 0.0101 0.1609 

 

Level Groups Mean 

SVM-SMOTE   A 0.8390 
GA-IS B 0.8173 

SVM-RU B 0.8129 

 

2. blood transfusion dataset 

ANOVA table                                                                                                                                                     (α=0.05)                                                                                                                                                        

Source DF Sum of Squares Mean Square F ratio p-value 

methods 2 0.0030 0.0015 25.2081 < .0001* 

Error 57 0.0034 0.0001 
  C. Total 59 0.0064   
   

Comparison of mean difference of the g-mean (Tukey’s HSD Post-hoc test) 

Level -Level Difference Std. Err. Diff. Lower CL Upper CL p-value 

SVM-SMOTE SVM-RU 0.0173 0.0024 0.0114 0.0232 < .0001* 

SVM-SMOTE GA-IS 0.0099 0.0024 0.0040 0.0158 0.0005* 

GA-IS SVM-RU 0.0074 0.0024 0.0015 0.0133 0.01* 

 
 

Level Groups Mean 

GA-IS   A 0.7072 
SVM-SMOTE B 0.6973 

SVM-RU C 0.6899 
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APPENDIX D. MEAN DIFFERENCE BEWTEEN g-mean OF the training set  

IN TERMS OF THREE APPROACHES (SVM-SMOTE, SVM-RU and GA-IS) 

 (CONTINUED) 
 
3. Pima dataset 
ANOVA table                                                                                                                                                     (α=0.05)                                                                                                                                                       

Source DF Sum of Squares Mean Square F ratio p-value 

methods 2 0.0085 0.0043 234.0065 < .0001* 

Error 57 0.0010 0.0000 
  C. Total 59 0.0096       

 
Comparison of mean difference of the g-mean (Tukey’s HSD Post-hoc test) 

Level -Level Difference Std. Err. Diff. Lower CL Upper CL p-value 

SVM-SMOTE SVM-RU 0.0286 0.0014 0.0253 0.0318 < .0001* 

SVM-SMOTE GA-IS 0.0197 0.0014 0.0164 0.0229 < .0001* 

GA-IS SVM-RU 0.0089 0.0014 0.0056 0.0121 < .0001* 

 

Level Groups Mean 

GA-IS   A 0.7914 
SVM-SMOTE B 0.7717 

SVM-RU C 0.7628 

 

4. wine dataset  

ANOVA table                                                                                                                                                     (α=0.05)                                                                                                                                                         

Source DF Sum of Squares Mean Square F ratio p-value 

methods 2 0.0264 0.0132 514.0868 < .0001* 

Error 57 0.0015 0.0000 
  C. Total 59 0.0279       

 
Comparison of mean difference of the g-mean (Tukey’s HSD Post-hoc test) 

Level -Level Difference Std. Err. Diff. Lower CL Upper CL p-value 

SVM-SMOTE SVM-RU 0.0458 0.0016 0.0419 0.0497 < .0001* 

SVM-SMOTE GA-IS 0.0431 0.0016 0.0392 0.0469 <.0001* 

GA-IS SVM-RU 0.0027 0.0016 -0.0011 0.0066 0.2093 

 

Level Groups Mean 

GA-IS   A 0.9257 
SVM-SMOTE   A 0.9285 

SVM-RU B 0.8827 

 



www.manaraa.com

88 

 

APPENDIX D. MEAN DIFFERENCE BEWTEEN g-mean OF the training set  

IN TERMS OF THREE APPROACHES (SVM-SMOTE, SVM-RU and GA-IS) 

 (CONTINUED) 
 

5. yeast dataset 

ANOVA table                                                                                                                                                    (α=0.05)                                                                                                                                                       

Source DF Sum of Squares Mean Square F ratio p-value 

methods 2 0.0044 0.0022 99.6993 < .0001* 

Error 57 0.0013 0.0000 
  C. Total 59 0.0057 

    
Comparison of mean difference of the g-mean (Tukey’s HSD Post-hoc test) 

Level -Level Difference Std. Err. Diff. Lower CL Upper CL p-value 

SVM-SMOTE SVM-RU 0.0196 0.0015 0.016 0.0232 < .0001* 

SVM-SMOTE GA-IS 0.0162 0.0015 0.0126 0.0198 < .0001* 

GA-IS SVM-RU 0.0034 0.0015 -0.0002 0.007 0.0648 

 

Level Groups Mean 

SVM-SMOTE   A 0.8251 
GA-IS B 0.8089 

SVM-RU B 0.8055 
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APPENDIX E. MEAN DIFFERENCE BEWTEEN g-mean OF the training set 

CORRESPONDING TO ITERATIONS CHOSEN FOR INSTANCE 

SELECTION 

 

ONE-WAY ANOVA RESULTS (α=0.05) 

1. abalone dataset 

Source DF Sum of Squares Mean Square F ratio p-value 

Iterations 2 0.0026 0.0013 176.9726 < 0.0001* 

Error 57 0.0004 0.0000 
  C. Total 59 0.0031       

 

2. blood transfusion dataset 

Source DF Sum of Squares Mean Square F ratio p-value 

Iterations 2 0.0156 0.0078 70.6904 < 0.0001* 

Error 57 0.0063 0.0001 
  C. Total 59 0.0220       

 

3. Pima dataset 

Source DF Sum of Squares Mean Square F ratio p-value 

Iterations 2 0.0673 0.0337 5295.5310 < 0.0001* 

Error 57 0.0004 0.0000 
  C. Total 59 0.0677       

 

4. wine dataset  

Source DF Sum of Squares Mean Square F ratio p-value 

Iterations 2 0.0470 0.0235 8692.3748 < 0.0001* 
Error 57 0.0002 0.0000   

C. Total 59 0.0472       

 

5. yeast dataset 

Source DF Sum of Squares Mean Square F ratio p-value 

Iterations 2 0.0022 0.0011 250.8151 < 0.0001* 
Error 57 0.0003 0.0000   

C. Total 59 0.0025       
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APPENDIX F. SELECTED INSTANCES FOR LEARNING FROM GENETIC 

ALGORITHM BASED INSTACE SELECTION APPROACH 

1. abalone dataset 
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APPENDIX F. SELECTED INSTANCES FOR LEARNING FROM GENETIC 

ALGORITHM BASED INSTACE SELECTION APPROACH 

(CONTINUED) 

2. blood transfusion dataset 

  

  



www.manaraa.com

92 

 

APPENDIX F. SELECTED INSTANCES FOR LEARNING FROM GENETIC 

ALGORITHM BASED INSTACE SELECTION APPROACH 

(CONTINUED) 

3. Pima dataset 
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APPENDIX F. SELECTED INSTANCES FOR LEARNING FROM GENETIC 

ALGORITHM BASED INSTACE SELECTION APPROACH 

(CONTINUED) 

4. wine dataset  
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APPENDIX F. SELECTED INSTANCES FOR LEARNING FROM GENETIC 

ALGORITHM BASED INSTACE SELECTION APPROACH 

(CONTINUED) 

5. yeast dataset 
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